damascus steel wedding rings

The reputation and history of Damascus steel has given rise to many legends, such as the ability to cut through a rifle barrel or to cut a hair falling across the blade. A research team in Germany published a report in 2006 revealing nanowires and carbon nanotubes in a blade forged from Damascus steel. Although many types of modern steel outperform ancient Damascus alloys, chemical reactions in the production process made the blades extraordinary for their time, as Damascus steel was superplastic and very hard at the same time. During the smelting process to obtain Wootz steel ingots, woody biomass and leaves are known to have been used as carburizing additives along with certain specific types of iron rich in microalloying elements. These ingots would then be further forged and worked into Damascus steel blades. Research now shows that carbon nanotubes can be derived from plant fibers, suggesting how the nanotubes were formed in the steel. Some experts expect to discover such nanotubes in more relics as they are analyzed more closely.

stainless steel wedding rings

Stainless steels do not suffer uniform corrosion, like carbon steel, when exposed to wet environments. Unprotected carbon steel rusts readily when exposed to the combination of air and moisture. The resulting iron oxide surface layer (the rust) is porous and fragile. Since iron oxide occupies a larger volume than the original steel this layer expands and tends to flake and fall away exposing the underlying steel to further attack. In comparison, stainless steels contain sufficient chromium to undergo passivation, spontaneously forming a microscopically thin inert surface film of chromium oxide by reaction with the oxygen in air and even the small amount of dissolved oxygen in water. This passive film prevents further corrosion by blocking oxygen diffusion to the steel surface and thus prevents corrosion from spreading into the bulk of the metal. This film is self-repairing if it is scratched or temporarily disturbed by an upset condition in the environment that exceeds the inherent corrosion resistance of that grade.